Panjang garis proyeksi sisi di hadapan sudut lancip d = b2 + c2 – a2
2c
c – d = a2+ c2– b2
2c
a2 = h2 + (c – d)2
b2 – a2 = d2 – (c – d)2
b2 – a2 = (d + c – d)(d – c + d)
b2 – a2 = c(2d – c)
2d – c = b2 – a2
c
2d = b2 – a2 + c2
c c
2d = b2 + c2 – a2
c
d = b2 + c2 – a2
2c
Panjang garis proyeksi sisi di hadapan sudut tumpul p = b2 + c2 – a2
2c
b2 = CD2 + p2
a2 = CD2 + (p – c)2
b2 – a2 = p2 – (p – c)2
b2 – a2 = (p + p – c)(p – p + c)
b2 – a2 = (2p – c)c
2p – c = b2 – a2
c
2p = b2 – a2 + c2
c c
2p = b2 + c2 – a2
c
p = b2 + c2 – a2
2c
Contoh Soal
Tentukan panjang c jika c – d = 2 !
Pembahasan :
c – d = a2+ c2– b2
2c
2 = 9 + c2– 25
2c
4c = c2– 16
c2– 4c – 16 = 0
Dengan rumus kuadrat, didapatkan :
c = 2(√5 + 1) satuan panjang
Tidak ada komentar:
Posting Komentar